Главное меню
67
Если вы посмотрите на поверхность некоторых видов глины, и других полезных ископаемых в растровый электронный микроскоп, то вы увидите удивительный и красивый мир. Кристаллы растут как ряды цветов или кактусов, сады неорганических лепестков роз, крошечные спирали – подобные поперечным срезам сочных кактусов, ощетинившиеся органные трубы, сложные угловые формы, сложенные как в миниатюрном кристаллическом оригами, свёрнутые наросты, подобные мечущимся червям или выжатой зубной пасте. Упорядоченность форм станет даже поразительнее на большем увеличении. На тех уровнях, где уже заметно фактическое положение атомов, можно увидеть, что вся поверхность кристалла, с регулярностью ткацкой машины “разрисована ёлочкой", как твидовая ткань. Но в этом рисунке присутствует жизненно-важный элемент – дефекты. Посреди упорядоченного рисунка "ёлочкой" может быть заплата, идентичная остальному рисунку, но повёрнутая вокруг оси под каким-то углом так, чтобы узор пошёл другом направлении. Или узор может идти в том же самом направлении, но каждый ряд “соскальзывает” на полряда в сторону. Почти все естественные кристаллы имеют дефекты. И как только дефект появился, он скорее всего будет скопирован, так как последующие слои кристалла строятся по образцу данного. Дефекты могут случаться где угодно на поверхности кристалла. Если вам нравится размышлять о ёмкости для хранения информации (что нравится мне), то вы могли бы представить себе огромное множество различного вида дефектов, которые можно создавать на поверхности кристалла. Вычисления насчёт упаковки Нового Завета в ДНК единственной бактерии могут быть столь же выразительно проделаны и в отношении почти любого кристалла. Чем ДНК превосходит естественные кристаллы – так это наличием средств чтения записанной на ней информации. Абстрагируясь от проблемы считывания, вы можете легко изобрести произвольный код, использующий дефекты атомной структуры кристалла, и обозначающий двоичные числа. Тогда вы бы смогли упаковать несколько Новых Заветов в минеральный кристалл размером с булавочную головку. В сущности, именно так музыкальная информация записывается на поверхность лазерного (компакт-) диска, хотя и в большем масштабе. Музыкальные ноты преобразованы компьютером в двоичные числа. С помощью лазера на гладкой и ровной поверхности диска выгравировывается набор крошечных дефектов. Каждая такая выгравированная маленькая дырочка обозначает двоичную 1 (или 0 – это непринципиально). Когда диск проигрывается, то другой лазерный луч “читает” набор дефектов, и специализированный компьютер проигрывателя конвертирует двоичные числа снова в звуковые колебания, которые усиливаются, и их можно слышать.
Хотя сегодня лазерные диски используются главным образом для хранения музыки, вы могли бы упаковывать на один из них всю Энциклопедию Британика, и читать её, используя ту же самую лазерную технику. Кристаллические дефекты на атомном уровне гораздо мельче ямок, выгравированных на поверхности лазерного диска, поэтому на кристалл можно в принципе упаковать больше информации на ту же площадь. Молекулы ДНК, чья информационная ёмкость уже произвела на нас впечатление, сами по себе в чём-то подобны кристаллам. Хотя кристаллы глины могли бы теоретически хранить те же самые потрясающие объёмы информации, что и ДНК или лазерные диски, но никто предполагает, что они когда-либо использовались для этого. Предполагаемая роль глины и других минеральных кристаллов состоит в их активности как изначальных “низкотехнологичных” репликаторов, тех самых, которые в конечном счёте были заменены высокотехнологичными ДНК. Они спонтанно формируются в водах нашей планеты без сложных “машин” в которых нуждается ДНК; они спонтанно формируют дефекты, некоторые из которых могут копироваться в последующих слоях кристалла. Если фрагменты такого “дефектного” кристалла позже отломились, мы могли бы представить их в роли “семян” для новых кристаллов, каждый из которых “унаследовал" бы набор “родительских” дефектов.
Таким образом, мы построили умозрительную картину жизни минеральных кристаллов на изначальной Земле, показав некоторые из их свойств – репликации, размножения, наследственности и мутаций, которые необходимы для начала некоей формы нарастающего отбора. Однако всё ещё отсутствует компонент “власти”: особенности репликаторов должны так или иначе влиять на вероятность их собственного копирования. Когда мы говорили про репликаторы абстрактно, мы видели, что их “власть” могла быть следствием некоего прямо присущего им свойства, такого, как “клейкость”. На том элементарном уровне, гордое слово “власть” представляется вряд ли оправданным. Я применяю его только из-за того, что оно может стать оправданным на более поздних стадиях эволюции: например, власть ядовитых змеиных зубов над размножением (посредством косвенного влияния на выживание змеи) ДНК, кодирующей зубы. Мы можем предполагать, что безотносительно к тому, были ли изначальные низкотехнологические репликаторы минеральными кристаллами, или они были органическими прямыми предшественниками самой ДНК, осуществляемая ими “власть”, была прямой и элементарной, подобной клейкости. Продвинутые рычаги власти, такие, как ядовитый зуб змеи, или цветок орхидеи, появились гораздо позже.
Что понятие “власти” могло бы означать в случае глины? Какие побочные свойства глины могли бы повлиять на вероятность распространения именно этой вариации глины в окружающей местности? Глина состоит из химических строительных блоков, таких, как кремневая кислота, и ионов металлов, которые растворены в реках, и были ранее “вымыты” этими потоками из камней, находящихся выше по течению. В соответствующих условиях они кристаллизуются из раствора, и снова выпадают в осадок, формируя глины. (“Поток” в этом случае, будет вероятнее всего означать просачивающиеся подземные воды, а не мчащуюся открытую реку. Но я буду для простоты использовать более общее слово “поток”.) Будут или нет расти конкретные разновидности кристаллов
Скачать полностью в формате doc
Или читать по номерам страниц
41 42 43 44 45 46 47 48 49 50 |
91 92 93 94 95 96 97 98 99 100 |
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |